Appendix C

OpenGL and Window Systems

OpenGL is available on many different platforms and works with many different
window systems. OpenGL is designed to complement window systems, not duplicate
their functionality. Therefore, OpenGL performs geometric and image rendering in two
and three dimensions, but it does not manage windows or handle input events.

However, the basic definitions of most window systems don't support a library as
sophisticated as OpenGL, with its complex and diverse pixel formats, including depth,
stencil, and accumulation buffers, as well as double-buffering. For most window
systems, some routines are added to extend the window system to support OpenGL.

This appendix introduces the extensions defined for several window and operating
systems: the X Window System, the Apple Mac OS, OS/2 Warp from IBM, and
Microsoft Windows NT and Windows 95. You need to have some knowledge of the
window systems to fully understand this appendix.

This appendix has the following major sections:

e “GLX: OpenGL Extension for the X Window System”

e “AGL: OpenGL Extension to the Apple Macintosh”

e “PGL: OpenGL Extension for IBM OS/2 Warp”

“WGL: OpenGL Extension for Microsoft Windows NT and Windows 95"

563

564

GLX: OpenGL Extension for the X Window System

In the X Window System, OpenGL rendering is made available as an extension to X in
the formal X sense. GLX is an extension to the X protocol (and its associated API) for
communicating OpenGL commands to an extended X server. Connection and
authentication are accomplished with the normal X mechanisms.

As with other X extensions, there is a defined network protocol for OpenGL's rendering
commands encapsulated within the X byte stream, so client-server OpenGL rendering is
supported. Since performance is critical in three-dimensional rendering, the OpenGL
extension to X allows OpenGL to bypass the X server’s involvement in data encoding,
copying, and interpretation and instead render directly to the graphics pipeline.

The X Visual is the key data structure to maintain pixel format information about the
OpenGL window. A variable of data type XVisuallnfo keeps track of pixel information,
including pixel type (RGBA or color index), single or double-buffering, resolution of
colors, and presence of depth, stencil, and accumulation buffers. The standard X Visuals
(for example, PseudoColor, TrueColor) do not describe the pixel format details, so each
implementation must extend the number of X Visuals supported.

The GLX routines are discussed in more detail iMQpenGL Reference Manual
Integrating OpenGL applications with the X Window System and the Motif widget set
is discussed in great detail@penGL Programming for the X Window SysbsyrmMark
Kilgard (Reading, MA: Addison-Wesley Developers Press, 1996), which includes full
source code examples. If you absolutely want to learn about the internals of GLX, you
may want to read the GLX specification, which can be found at

ftp://sgigate.sgi.com/pub/opengl/doc/

Initialization

Use glXQueryExtension() and giXQueryVersion() to determine whether the GLX
extension is defined for an X server and, if so, which version is present.
gIXQueryExtensionsString() returns extension information about the client-server
connection. gIXGetClientString() returns information about the client library, including
extensions and version number. giXQueryServerString() returns similar information
about the server.

gIXChooseVisual() returns a pointer to an XVisuallnfo structure describing the visual
that meets the client’s specified attributes. You can query a visual about its support of a
particular OpenGL attribute with gIXGetConfig().

Appendix C: OpenGL and Window Systems

Controlling Rendering

Several GLX routines are provided for creating and managing an OpenGL rendering
context. You can use such a context to render off-screen if you want. Routines are also
provided for such tasks as synchronizing execution between the X and OpenGL streams,
swapping front and back buffers, and using an X font.

Managing an OpenGL Rendering Context

An OpenGL rendering context is created with giXCreateContext(). One of the
arguments to this routine allows you to request a direct rendering context that bypasses
the X server as described previously. (Note that to do direct rendering, the X server
connection must be local, and the OpenGL implementation needs to support direct
rendering.) gIiXCreateContext() also allows display-list and texture-object indices and
definitions to be shared by multiple rendering contexts. You can determine whether a
GLX context is direct with gIXIsDirect().

To make a rendering context current, use giXMakeCurrent(); giXGetCurrentContext()
returns the current context. You can also obtain the current drawable with
gIXGetCurrentDrawable() and the current X Display with giXGetCurrentDisplay().
Remember that only one context can be current for any thread at any one time. If you
have multiple contexts, you can copy selected groups of OpenGL state variables from
one context to another with gIXCopyContext(). When you're finished with a particular
context, destroy it with gIXDestroyContext().

Off-Screen Rendering

To render off-screen, first create an X Pixmap and then pass this as an argument to
gliXCreateGLXPixmap(). Once rendering is completed,

you can destroy the association between the X and GLX Pixmaps with
glXDestroyGLXPixmap(). (Off-screen rendering isn’'t guaranteed to be supported for
direct renderers.)

Synchronizing Execution

To prevent X requests from executing until any outstanding OpenGL rendering is
completed, call gIXWaitGL(). Then, any previously issued OpenGL commands are
guaranteed to be executed before any X rendering calls made after gIXWaitGL().
Although the same result can be achieved with glFinish(), giIXWaitGL() doesn’t require

a round trip to the server and thus is more efficient in cases where the client and server
are on separate machines.

GLX: OpenGL Extension for the X Window System

565

To prevent an OpenGL command sequence from executing until any outstanding X
requests are completed, use gIXWaitX(). This routine guarantees that previously issued
X rendering calls are executed before any OpenGL calls made after gIXWaitX().

Swapping Buffers

For drawables that are double-buffered, the front and back buffers can be exchanged by
calling gIXSwapBuffers(). An implicit glFlush() is done as part of this routine.

Using an X Font

A shortcut for using X fonts in OpenGL is provided with the command gIXUseXFont().
This routine builds display lists, each of which calls gIBitmap(), for each requested
character from the specified font and font size.

GLX Prototypes

Initialization
Determine whether the GLX extension is defined on the X server:
Bool gIXQueryExtension (Displaypy, int *errorBase int *eventBase;
Query version and extension information for client and server:
Bool gIXQueryVersion (Displaydpy int *major, int *minor);
const char* giXGetClientString (Displagipy, int name);
const char* giXQueryServerString (Displapy; int screen int name);
const char* gIXQueryExtensionsString (Displaypy; int screen);
Obtain the desired visual:

XVisuallnfo* gIXChooseVisual (Displaydpy; int screen
int *attribList);

int gIXGetConfig (Displaydpy, XVisuallnfo *visual int attrib,
int *value);

Controlling Rendering

Manage or query an OpenGL rendering context:

566 Appendix C: OpenGL and Window Systems

GLXContext glXCreateContext (Displagpy, XVisuallnfo *visual,
GLXContexshareList Bool direct);

void glXDestroyContext (Displaylpy, GLXContextcontext);

void gIXCopyContext (Displaydpy, GLXContextsource
GLXContextdest unsigned longnask);

Bool gIXIsDirect (Display dpy, GLXContextcontext);

Bool giXMakeCurrent (Displaydpy, GLXDrawabledraw,
GLXContextontext);

GLXContext gIXGetCurrentContext (void);
Display* gIXGetCurrentDisplay (void);
GLXDrawable gIXGetCurrentDrawable (void);
Perform off-screen rendering:

GLXPixmap glXCreateGLXPixmap (Displaggy, XVisuallnfo *visual,
Pixmapixmap);

void gIXDestroyGLXPixmap (Displaydpy GLXPixmappix);
Synchronize execution:

void gIXWaitGL (void);

void gIXWaitX (void);
Exchange front and back buffers:

void gIXSwapBuffers (Displaydpy GLXDrawabledrawable);
Use an X font:

void gIXUseXFont (Forfont, int first, int count int listBase);

AGL: OpenGL Extension to the Apple Macintosh

This section covers the routines defined as the OpenGL extension to the Apple
Macintosh (AGL), as defined by Template Graphics Software. An understanding of the
way the Macintosh handles graphics rendering (QuickDraw) is requireddadistosh
Toolbox Essentialandimaging With QuickDrawnanuals from thénside Macintosh

series are also useful to have at hand.

AGL: OpenGL Extension to the Apple Macintosh

567

568

For more information (including how to obtain the OpenGL software library for the
Power Macintosh), you may want to check out the web site for OpenGL information at
Template Graphics Software:

http://www.sd.tgs.com/Products/opengl.htm

For the Macintosh, OpenGL rendering is made available as a library that is either
compiled in or resident as an extension for an application that wishes to make use of it.
OpenGL is implemented in software for systems that do not possess hardware
acceleration. Where acceleration is available (through the QuickDraw 3D Accelerator),
those capabilities that match the OpenGL pipeline are used with the remaining
functionality being provided through software rendering.

The data type AGLPixelFmtID (the AGL equivalent to XVisuallnfo) maintains pixel
information, including pixel type (RGBA or color index), single- or double-buffering,
resolution of colors, and presence of depth, stencil, and accumulation buffers.

In contrast to other OpenGL implementations on other systems (such as the X Window
System), the client/server model is not used. However, you may still need to call
glFlush() since some hardware accelerators buffer the OpenGL pipeline and require a
flush to empty it.

Initialization

Use aglQueryVersion() to determine what version of OpenGL for the Macintosh is
available.

The capabilities of underlying graphics devices and your requirements for rendering
buffers are resolved using aglChoosePixelFmt(). Use aglListPixelFmts() to find the
particular formats supported by a graphics device. Given a pixel format, you can
determine which attributes are available by using aglGetConfig().

Rendering and Contexts

Several AGL routines are provided for creating and managing an OpenGL rendering
context. You can use such a context to render into either a window or an off-screen
graphics world. Routines are also provided that allow you to swap front and back
rendering buffers, adjust buffers in response to a move, resize or graphics device change
event, and use Macintosh fonts. For software rendering (and in some cases,
hardware-accelerated rendering) the rendering buffers are created in your application
memory space. For the application to work properly you must provide sufficient
memory for these buffers in your application’s SIZE resource.

Appendix C: OpenGL and Window Systems

Managing an OpenGL Rendering Context

An OpenGL rendering context is created (at least one context per window being
rendered into) with aglCreateContext(). This takes the pixel format you selected as a
parameter and uses it to initialize the context.

Use aglMakeCurrent() to make a rendering context current. Only one context can be
current for a thread of control at any time. This indicates which drawable is to be
rendered into and which context to use with it. It's possible for more than one context to
be used (not simultaneously) with a particular drawable. Two routines allow you to
determine which is the current rendering context and drawable being rendered into:
aglGetCurrentContext() and aglGetCurrentDrawable().

If you have multiple contexts, you can copy selected groups of OpenGL state variables
from one context to another with aglCopyContext(). When a particular context is
finished with, it should be destroyed by calling aglDestroyContext().

On-screen Rendering

With the OpenGL extensions for the Apple Macintosh you can choose whether window
clipping is performed when writing to the screen and whether the cursor is hidden during
screen writing operations. This is important since these two items may affect how fast
rendering can be performed. Call aglSetOptions() to select these options.

Off-screen Rendering

To render off-screen, first create an off-screen graphics world in the usual way, and pass
the handle into aglCreateAGLPixmap(). This routine returns a drawable that can be used
with aglMakeCurrent(). Once rendering is completed, you can destroy the association
with aglDestroyAGLPixmap().

Swapping Buffers

For drawables that are double-buffered (as per the pixel format of the current rendering
context), call aglSwapBuffers() to exchange the front and back buffers. An implicit
glFlush() is performed as part of this routine.

Updating the Rendering Buffers

The Apple Macintosh toolbox requires you to perform your own event handling and
does not provide a way for libraries to automatically hook in to the event stream. So that
the drawables maintained by OpenGL can adjust to changes in drawable size, position
and pixel depth, aglUpdateCurrent() is provided.

AGL: OpenGL Extension to the Apple Macintosh

569

This routine must be called by your event processing code whenever one of these events
occurs in the current drawable. Ideally the scene should be rerendered after a update call
to take into account the changes made to the rendering buffers.

Using an Apple Macintosh Font

A shortcut for using Macintosh fonts is provided with aglUseFont(). This routine builds
display lists, each of which calls gIBitmap(), for each requested character from the
specified font and font size.

Error Handling

An error-handling mechanism is provided for the Apple Macintosh OpenGL extension.
When an error occurs you can call aglGetError() to get a more precise description of
what caused the error.

AGL Prototypes

Initialization
Determine AGL version:

GLboolean aglQueryVersion (int&jor, int *minor);
Pixel format selection, availability, and capability:

AGLPixelFmtID aglChoosePixelFmt (GDHandlieY int ndey
int *attribs);

int aglListPixelFmts (GDHandbey AGLPixelFmtID **fmts);

GLboolean aglGetConfig (AGLPixelFmtfiX, int attrib, int *value);

Controlling Rendering
Manage an OpenGL rendering context:

AGLContext aglCreateContext (AGLPixelFmi{bix,
AGLContexshareList);

GLboolean aglDestroyContext (AGLConteghtext);
GLboolean aglCopyContext (AGLContegiurce AGLContextdest
GLuintmask);

570 Appendix C: OpenGL and Window Systems

GLboolean aglMakeCurrent (AGLDrawablawable
AGLContextontext);

GLboolean aglSetOptions (oyts);

AGLContext aglGetCurrentContext (void);

AGLDrawable aglGetCurrentDrawable (void);
Perform off-screen rendering:

AGLPixmap aglCreateAGLPixmap (AGLPixelFmtix,
GWorldPtpixmap);

GLboolean aglDestroyAGLPixmap (AGLPixmgaig);
Exchange front and back buffers:

GLboolean aglSwapBuffers (AGLDrawabliawable);
Update the current rendering buffers:

GLboolean aglUpdateCurrent (void);
Use a Macintosh font:

GLboolean aglUseFont (if@milyID, int size int first, int count
intlistBase);

Find the cause of an error:

GLenum aglGetError (void);

PGL: OpenGL Extension for IBM OS/2 Warp

OpenGL rendering for IBM OS/2 Warp is accomplished by using PGL routines added
to integrate OpenGL into the standard IBM Presentation Manager. OpenGL with PGL
supports both a direct OpenGL context (which is often faster) and an indirect context
(which allows some integration of Gpi and OpenGL rendering).

The data type VISUALCONFIG (the PGL equivalent to XVisuallnfo) maintains the
visual configuration, including pixel type (RGBA or color index), single- or
double-buffering, resolution of colors, and presence of depth, stencil, and accumulation
buffers.

To get more information (including how to obtain the OpenGL software library for IBM
0S/2 Warp, Version 3.0), you may want to start at

PGL: OpenGL Extension for IBM OS/2 Warp 571

572

http://www.austin.ibm.com/software/OpenGL/

Packaged along with the software is the docun@p&nGL On OS/2 Waypvhich
provides more detailed information. OpenGL support is included with the base
operating system with OS/2 Warp Version 4.

Initialization

Use pglQueryCapability() and pglQueryVersion() to determine whether the OpenGL is
supported on this machine and, if so, how it is supported and which version is present.
pglChooseConfig() returns a pointer to an VISUALCONFIG structure describing the
visual configuration that best meets the client’s specified attributes. A list of the
particular visual configurations supported by a graphics device can be found using

pglQueryConfigs().

Controlling Rendering

Several PGL routines are provided for creating and managing an OpenGL rendering
context, capturing the contents of a bitmap, synchronizing execution between the
Presentation Manager and OpenGL streams, swapping front and back buffers, using a
color palette, and using an OS/2 logical font.

Managing an OpenGL Rendering Context

An OpenGL rendering context is created with pglCreateContext(). One of the arguments

to this routine allows you to request a direct rendering context that bypasses the Gpi and
render to a PM window, which is generally faster. You can determine whether a OpenGL

context is direct with pglisindirect().

To make a rendering context current, use pglMakeCurrent(); pglGetCurrentContext()
returns the current context. You can also obtain the current window with
pglGetCurrentWindow(). You can copy some OpenGL state variables from one context
to another with pglCopyContext(). When you're finished with a particular context,
destroy it with pglDestroyContext().

Access the Bitmap of the Front Buffer

To lock access to the bitmap representation of the contents of the front buffer, use
pglGrabFrontBitmap(). An implicit glFlush() is performed, and you can read the bitmap,
but its contents are effectively read-only. Immediately after access is completed, you
should call pglReleaseFrontBitmap() to restore write access to the front buffer.

Appendix C: OpenGL and Window Systems

Synchronizing Execution

To prevent Gpi rendering requests from executing until any outstanding OpenGL
rendering is completed, call pglWaitGL(). Then, any previously issued OpenGL
commands are guaranteed to be executed before any Gpi rendering calls made after
pglWaitGL().

To prevent an OpenGL command sequence from executing until any outstanding Gpi
requests are completed, use pglWaitPM(). This routine guarantees that previously issued
Gpi rendering calls are executed before any OpenGL calls made after pglWaitPM().

Note: OpenGL and Gpi rendering can be integrated in the same window only if the
OpenGL context is an indirect context.

Swapping Buffers

For windows that are double-buffered, the front and back buffers can be exchanged by
calling pglSwapBuffers(). An implicit gIFlush() is done as part of this routine.

Using a Color Index Palette

When you are running in 8-bit (256 color) mode, you have to worry about color palette
management. For windows with a color index Visual Configuration, call
pglSelectColorindexPalette() to tell OpenGL what color-index palette you want to use
with your context. A color palette must be selected before the context is initially bound
to a window. In RGBA mode, OpenGL sets up a palette automatically.

Using an OS/2 Logical Font

A shortcut for using OS/2 logical fonts in OpenGL is provided with the command
pglUseFont(). This routine builds display lists, each of which calls gIBitmap(), for each
requested character from the specified font and font size.

PGL Prototypes

Initialization

Determine whether OpenGL is supported and, if so, its version number;
long pglQueryCapability (HABab);
void pglQueryVersion (HABRab, int *major, int *minor);

Visual configuration selection, availability and capability:

PGL: OpenGL Extension for IBM OS/2 Warp 573

574

PVISUALCONFIG pglChooseConfig (HAah, int *attribList);
PVISUALCONFIG * pglQueryConfigs (HABab);

Controlling Rendering
Manage or query an OpenGL rendering context:

HGC pglCreateContext (HABab, PVISUALCONFIGpVisualConfig
HGCshareList Bool isDrect);

Bool pglDestroyContext (HABab, HGChgo);
Bool pglCopyContext (HABab, HGC source HGCdest GLuint masR;
Bool pglMakeCurrent (HABab, HGChgc HWND hwnd);
long pglisindirect (HABiab, HGChgo);
HGC pglGetCurrentContext (HAaD);
HWND pglGetCurrentWindow (HABab);
Access and release the bitmap of the front buffer:
Bool pglGrabFrontBitmap (HABab, HPS *thps HBITMAP *phbitmayp;
Bool pglReleaseFrontBitmap (HARD);
Synchronize execution:
HPS pglWaitGL (HABhab);
void pglWaitPM (HABhab);
Exchange front and back buffers:
void pglSwapBuffers (HABab, HWND hwnd);
Finding a color-index palette:
void pglSelectColorindexPalette (HARb, HPAL, hpal, HGChgo);
Use an OS/2 logical font:

Bool pglUseFont (HABiab, HPShps FATTRS*fontAttribs,
longlogicalld, intfirst, int count int listBasé;

Appendix C: OpenGL and Window Systems

WGL: OpenGL Extension for Microsoft Windows NT
and Windows 95

OpenGL rendering is supported on systems that run Microsoft Windows NT and
Windows 95. The functions and routines of the Win32 library are necessary to initialize
the pixel format and control rendering for OpenGL. Some routines, which are prefixed
by wgl, extend Win32 so that OpenGL can be fully supported.

For Win32/WGL, the PIXELFORMATDESCRIPTOR is the key data structure to
maintain pixel format information about the OpenGL window. A variable of data type
PIXELFORMATDESCRIPTOR keeps track of pixel information, including pixel type
(RGBA or color index), single- or double- buffering, resolution of colors, and presence
of depth, stencil, and accumulation buffers.

To get more information about WGL, you may want to start with technical articles
available through the Microsoft Developer Network at

http://www.microsoft.com/msdn/

Initialization

Use GetVersion() or the newer GetVersionEx() to determine version information.
ChoosePixelFormat() tries to find a PIXELFORMATDESCRIPTOR with specified
attributes. If a good match for the requested pixel format is found, then SetPixelFormat()
should be called to actually use the pixel format. You should select a pixel format in the
device context before calling wglCreateContext().

If you want to find out details about a given pixel format, use DescribePixelFormat() or,
for overlays or underlays, wglDescribeLayerPlane().

Controlling Rendering

Several WGL routines are provided for creating and managing an OpenGL rendering
context, rendering to a bitmap, swapping front and back buffers, finding a color palette,
and using either bitmap or outline fonts.

Managing an OpenGL Rendering Context

wglCreateContext() creates an OpenGL rendering context for drawing on the device in
the selected pixel format of the device context. (To create an OpenGL rendering context
for overlay or underlay windows, use wglCreateLayerContext() instead.) To make a
rendering context current, use wglMakeCurrent(); wglGetCurrentContext() returns the

WGL: OpenGL Extension for Microsoft Windows NT and Windows 95

575

576

current context. You can also obtain the current device context with
wglGetCurrentDC(). You can copy some OpenGL state variables from one context to
another with wglCopyContext() or make two contexts share the same display lists and
texture objects with wglShareLists(). When you're finished with a particular context,
destroy it with wglDestroyContext().

OpenGL Rendering to a Bitmap

Win32 has a few routines to allocate (and deallocate) bitmaps, to which you can render
OpenGL directly. CreateDIBitmap() creates a device-dependent bitmap (DDB) from a
device-independent bitmap (DIB). CreateDIBSection() creates a device-independent
bitmap (DIB) that applications can write to directly. When finished with your bitmap,
you can use DeleteObject() to free it up.

Synchronizing Execution

If you want to combine GDI and OpenGL rendering, be aware there are no equivalents
to functions like gIXWaitGL(), gIXWaitX(), or pglWaitGL() in Win32. Although
gIXWaitGL() has no equivalent in Win32, you can achieve the same effect by calling
glFinish(), which waits until all pending OpenGL commands are executed, or by calling
GdiFlush(), which waits until all GDI drawing has completed.

Swapping Buffers

For windows that are double-buffered, the front and back buffers can be exchanged by
calling SwapBuffers() or wglSwapLayerBuffers(); the latter for overlays and underlays.

Finding a Color Palette

To access the color palette for the standard (non-layer) bitplanes, use the standard GDI
functions to set the palette entries. For overlay or underlay layers, use
wglRealizeLayerPalette(), which maps palette entries from a given color-index layer
plane into the physical palette or initializes the palette of an RGBA layer plane.
wglGetLayerPaletteEntries() is used to query the entries in palettes of layer planes.

Using a Bitmap or Outline Font

WGL has two routines, wglUseFontBitmaps() and wglUseFontOutlines(), for
converting system fonts to use with OpenGL. Both routines build a display list for each
requested character from the specified font and font size.

Appendix C: OpenGL and Window Systems

WGL Prototypes

Initialization
Determine version information:
BOOL GetVersion (LPOSVERSIONINH@Versioninformation);
BOOL GetVersionEx (LPOSVERSIONINH@Versioninformation);
Pixel format availability, selection, and capability:

int ChoosePixelFormat (HD&dc
CONST PIXELFORMATDESCRIPTORppfd);

BOOL SetPixelFormat (HD@dg, intiPixelFormat
CONST PIXELFORMATDESCRIPTORppfd);

int DescribePixelFormat (HD@dc int iPixelFormat UINT nBytes
LPPIXELFORMATDESCRIPTORopfd);

BOOL wglDescribeLayerPlane (HDWg intiPixelFormat
intiLayerPlane UINT nBytes LPLAYERPLANEDESCRIPTORIpd);

Controlling Rendering

Manage or query an OpenGL rendering context:
HGLRC wglCreateContext (HD@dc);
HGLRC wglCreateLayerContext (HDg intiLayerPlane);
BOOL wglShareLists (HGLR®glrc1l, HGLRC hglrc2);
BOOL wglDeleteContext (HGLR@gIrc);

BOOL wglCopyContext (HGLRGglrcSource HGLRC higlrcDest
UINT mask);

BOOL wglMakeCurrent (HDGdg HGLRC hglrc);
HGLRC wglGetCurrentContext (VOID) ;
HDC wglGetCurrentDC (VOID);

Access and release the bitmap of the front buffer:

WGL: OpenGL Extension for Microsoft Windows NT and Windows 95

577

HBITMAP CreateDIBitmap (HD@&dg
CONST BITMAPINFOHEADER kpbmih DWORD fdwinit,
CONST VOID 1pblnit, CONST BITMAPINFO *pbmi, UINT fuUsage);

HBITMAP CreateDIBSection (HDBdc CONST BITMAPINFO pbmi,
UINTiUsage VOID *ppvBits HANDLE hSection DWORD dwOffset);

BOOL DeleteObject (HGDIOBIObject);
Exchange front and back buffers:

BOOL SwapBuffers (HDGdc);

BOOL wglSwapLayerBuffers (HD@dc UINT fuPlanes);
Finding a color palette for overlay or underlay layers:

int wglGetLayerPaletteEntries (HDI@Zlg intiLayerPlane intiStart,
intcEntries CONST COLORREFicr);

BOOL wglRealizeLayerPalette (HDtg intiLayerPlane
BOOLbRealize);

Use a bitmap or an outline font:

BOOL wglUseFontBitmaps (HDid&lc DWORDfirst, DWORD count
DWORDIistBase);

BOOL wglUseFontOutlines (HDGlg DWORDfirst, DWORD count
DWORDIistBase FLOAT deviation FLOAT extrusion int format,
LPGLYPHMETRICSFLOATpgmf);

578 Appendix C: OpenGL and Window Systems

WGL: OpenGL Extension for Microsoft Windows NT and Windows 95 579

